Indian Statistical Institute M. Math. II Year Mid-Semestral Examination 2008-2009 Fourier Analysis

Date: 23-09-2008 Total Marks: ≥ 50

Maximum marks you can get is 50.

1. (a) Let $f \in C^p(S' \times S' \times \cdots \times S') = C^p(S^n)$ for some $p \ge \frac{n+1}{2}$. Show that [4]

$$\sum_{k \in Z^n} |\hat{f}(k)| < \infty.$$

(b) Show that
$$\sum_{|k| \le L} \hat{f}(\underline{k}) \xrightarrow{e^{i\underline{k}\cdot\theta}}{(2\hat{u})^{n/2}}$$
 converges uniformly to $f(\underline{\theta})$ as $L \to \infty$.

[2]

2. (a) Show that closure (in the sup norm) of linear span [3]

$$\{e^{ik\cdot\theta}_{\sim\sim}: k \in Z^2, \theta = (\theta_1, \theta_2)\} = C(S' \times S').$$

(b) Show that $\{f \in C([0, 2\pi] \times [0, 2\pi] : f(0, t) = f(2\pi, t), f(s, 0) = f(s, 2\pi) \text{ for all } s, t\}$ is dense in $L^2([0, 2\pi] \times [0, 2\pi])$. You can assume $C([0, 2\pi] \times [0, 2\pi])$ is dense in $L^2([0, 2\pi] \times [0, 2\pi])$. [3] (c) State and prove a theorem connecting $||f||_{L^2([0, 2\pi]^2)}$ and $\sum_{\substack{k \in \mathbb{Z}^2 \\ \sim}} |\hat{f}(\underline{k})|^2$ when $\hat{f}(\underline{k})$ is the Fourier coefficient of f. [3]

- 3. Let $f_0 = \chi_{[0,1)}$ and $f_{j,n} = \chi_{[j2^{-n},(j+1)2^{-n})} \chi_{[(j+1)2^{-n},(j+2)2^{-n})}$ for $0 \le j \le 2^n 2$, n = 1, 2, 3, ... If $g \in L^2[0, 1]$ is orthogonal to f_0 and $f_{j,n}$ for all j, n show that $g \equiv 0$. [3]
- 4. a) Let $f(x) = e^{-x^2/2}$ for x real. Show that $\hat{f} = f$. [2] b) Let $\alpha > 0$. Let $g(x) = e^{-\alpha x^2}$ for x real calculate \hat{g} . [1]

c) Let g be as in (b). Show that g attains the minimum in Heisenberg Uncertainity principle. [4]

d) Let $\epsilon_k = \text{linspan}\{e^{-\frac{x^2}{2}x^j}: 0 \le j \le k\}$. Show that $\hat{\epsilon}_k = \epsilon_k$ for $k = 0, 1, 2, \dots$ [3]

5. (a) Let $f(x) = x^{-1/2}$ for $0 < x \le 1$ and 0 otherwise. Find $(M_f)(0)$. [1] b) If $g: R \to \mathbb{C}$ is a measurable function such that g(x) = 0 for $x \le 0$

b) If $g: R \to \mathbb{C}$ is a measurable function such that g(x) = 0 for $x \leq 0$ and $\lim_{x \to \infty} |g(x)| = \infty$, show that $(M_g)(u) = \infty$ for all u. [4]

6. Show that

$$HL'(R) \not\subset L'(R).$$

7. Prove Marcinkiewics theorem viz. let (X, S, μ), (Y, Γ, γ) be σ-finite measure spaces. Let F(X, C) = {f : [X, S] → C, f is measurable}. Let T be a sublinear operator: F(X, C) → F(Y, C) satisfying
(a) If g ∈ L[∞](X, μ), then Tg ∈ L[∞](Y, γ) and there exists a constant C_∞ such that

$$||Tg||_{\infty} \le C_{\infty} ||g||_{\infty}.$$

(b) Let $1 \leq p_o < \infty$. If $g \in L^{p_0}(X, \mu)$ then Tg satisfies

$$t^{p_0}\gamma\{y: |(Tg)(y)| > t\} \le C_{p_0} \|g\|_{p_0}^{p_0}$$

for some constant c_{p_0} independent of g.

Then for $p_0 , there exists a constant <math>C_p$ such that $||Tg||_p \le C_p ||g||_p$ for all $g \in L^p(X, \mu)$. [10]

8. Show that
$$L^p_w(\mathbb{R}^n) \not\subset \bigcup_{q \ge 1} L^q(\mathbb{R}^n).$$
 [4]

9. Let $f = \chi_{[0,1]}$. Calculate \hat{f} . Show that (a) $\hat{f} \in \bigcap_{p>1} L^p(R)$ [2], (b) $\hat{f} \notin L'(R)$. [2]

10. Let
$$f \in L'_{loc}(\mathbb{R}^n)$$
. If $M_f \in L'(\mathbb{R}^n)$, then $f \equiv 0$. [3]